Yogeshwaran D.
February 24, 2024. Time : 10.00-12.30 PM. Maximum points : 15

ALL QUESTIONS CARRY 5 POINTS. ATTEMPT ANY THREE OF THEM.

2 points will be deducted if you do not write your name on the answerscript.
You are free to use any results that you have learnt in your probability courses but please cite them clearly. Provide as many details as you can.

1. Let X_{1}, \ldots, X_{n} be independent sub-gaussian random variables with zero mean, unit variance and variance factor 1. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$. Prove that for every $p \in[2, \infty)$, there is an absolute constant C such that

$$
\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{p / 2} \leq \mathbb{E}\left[\left(\sum_{i=1}^{n} a_{i} X_{i}\right)^{p}\right] \leq\left(C p \sum_{i=1}^{n} a_{i}^{2}\right)^{p / 2}
$$

2. Let G_{n} be the graph with vertex set $V_{n}=\{-n, \ldots, n\}^{d} \subset \mathbb{Z}^{d}, d \geq 1$ and edges between $x, y \in V_{n}$ if $\|x-y\|_{1}=$ $\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|=1$. Let $p \in(0,1)$. Define $G_{n}(p)$ to be the random subgraph of G_{n} with vertex set V_{n} and edges in G_{n} are retained independently with probability p (and deleted with probability $1-p$). Let $I_{n}(p)$ be the number of isolated vertices in $G_{n}(p)$. Show that as $n \rightarrow \infty$,

$$
(2 n)^{-d} I(n, p) \rightarrow(1-p)^{2 d}, \text { a.s.. }
$$

3. (a) Show that the Poisson random variable is sub-exponential.
(b) Suppose that X_{1}, X_{2}, \ldots are a sequence of zero mean sub-Gaussian random variables (not necessarily independent) with variance factor ν. Show that for an absolute constant C,

$$
\mathbb{E}\left[\max _{i} \frac{\left|X_{i}\right|}{\sqrt{1+\log i}}\right] \leq C \sqrt{\nu}
$$

4. Let $X_{n}, Y_{n}, n \geq 1$ be a sequence of -1 random variables (not necessarily independent). Show the following:
(a) If $\lim \inf \mathbb{E}\left[X_{n} Y_{n}\right] \geq c$ then $\liminf \mathbb{P}\left\{X_{n}=Y_{n}\right\} \geq \frac{1+c}{2}$.
(b) If $\lim \sup \mathbb{E}\left[X_{n} Y_{n}\right] \leq c$ then $\liminf \mathbb{P}\left\{X_{n} \neq Y_{n}\right\} \geq \frac{1-c}{2}$.
5. If $M_{t}, t \geq 0$ is a martingale and ϕ is a convex function such that $\mathbb{E}\left[\left|\phi\left(M_{t}\right)\right|\right]<\infty$ for all t, then $\phi\left(M_{t}\right), t \geq 0$ is a sub-martingale. If M_{t} is a sub-Martingale and ϕ is an increasing convex function such that $\mathbb{E}\left[\mid \phi\left(M_{t}\right) \|\right]<\infty$ for all t, then $\phi\left(M_{t}\right), t \geq 0$ is a sub-martingale.

Possible Hints-

Sub-Gaussian random variable with variance factor $\nu: \Psi_{X-\mu}(s) \leq s^{2} \nu / 2$, for $s \in \mathbb{R}$ and where Ψ is the cumulant generating function i.e., $\Psi_{X}(s)=\log \mathbb{E}\left[e^{s X}\right]$.

Sub-exponential random variable with parameters ν and α : $\Psi_{X-\mu}(s) \leq s^{2} \nu / 2$, for $|s| \leq \alpha^{-1}$.
Hölder's inequality: Let $w_{j} \geq 0, \sum_{j=1}^{n} w_{j} \leq 1$ be weights and Y_{j} 's be non-negative random variables such that $\mathbb{E}\left[Y_{j}^{1 / w_{j}}\right]<\infty$ for all j. Then, we have that

$$
\mathbb{E}\left[\prod_{j=1}^{n} Y_{j}\right] \leq \prod_{j=1}^{n} \mathbb{E}\left[Y_{j}^{1 / w_{j}}\right]^{w_{j}}
$$

Gamma function: $\Gamma(a)=\int_{0}^{\infty} e^{-s} s^{a-1} d s$ for $a>0$ and $\Gamma(a) \leq a^{a}$.
Stirling's Approximation: $\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{1 /(12 n+1)} \leq n!\leq \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{1 /(12 n)}$.

